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We study an approximate method for the analytic determination of steady tempera- 
ture fields in the elements of optical systems. The method assumed can be used 
to study temperature fields of other objects with a curvilinear boundary. 

Optical systems often undergo the action of various energetic factors. This leads to 
the appearance of inhomogeneous temperature fields in the system and thermoelastic stresses 
in its separate elements (lenses, illuminators, mirrors). The presence of stresses produces 
deformations in optical elements, changes their form, and the parameters of the system are 
different from those calculated. This is expressed as a transform of thermooptical aberra- 
tions. In this connection we are most interested in the initial determination of the effect 
of energetic factors on the quality of the optical system operation in order to further use 
this data in the planning stage for developing compensation systems or automatic control. In 
this scheme the calculation of the temperature field is the first stage which imposes definite 
requirements on the solution, notably the sufficient accuracy and the relative simplicity of 
the final result. Below we study an approximate analytic method to determine steady tempera- 
ture fields in optical elements which satisfies these requirements to a sufficient degree. 

General Formulation of the Problem 

We study a lens whose surfaces $I, $2, and $3 are located in three media with the differ- 
ent temperatures tcl , tc2 , and tca (Fig. I). We assume that the heat exchange of the surfaces 
with the media is realized according to Newton's law with the constant coefficients of heat 
exchange a~, ~=, and aa. On the lens surface we give the heat flows with surface density 
q1(sl), q~(s2), q3(s~) that can be a coordinate function in the general case. Internal energy 
sources with volume power w(v) can also act on the lens. The absorbed part of the falling 
flows can play the role of the sources. Both the convex and the concave refracting surfaces 
$I and $2 in the cylindrical coordinate system are described by the equations z(sl) = f1(r), 
z(s2) = f2(r). To solve the problem we assume that the physical parameters are constant. As- 
suming axial symmetry, we write the mathematical notation of the problem formulated as follows: 

6~t 1 ~ a2t w (r, z) 
Or 2 ~ @ -  ~ ~ 0 ,  (1) 

r Or 02 ~ 

at ~i (t __ tc31 = g~ (r) 
On 1 2~ J z=h ~ ' 

[ a t  __ o~_!.~ ~ (t--- tc2) ] == q~( r )  
an 2 ;k Jz=t~ 1~ ' 

[ c)t ~3 ] q3(z) 
Or + ~ (t "tc3) r s  )~ (2c) 

We study the case of constant energetic actions 

q~ (r) -- qlo; q2 (r) -- q~0; q~ (r) -- q~0; w (r, z) ------w0 

This limitation is made to illustrate the method assumed more clearly and has no prin- 
cipal value. 

(2a) 

(2b) 
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Fig. i. Thermal model of problem. 

We write the temperature derivative along the normal which enters boundary conditions 
(2a) and (2b) by means of the equations 

Ot Ot Ot 
- -  cos (n, z) -7- -- COS (n, r). (3) 

On Oz Or 

Using  t he  a x i a l  t h i c k n e s s  of  the  l e n s  d and the  r a d i u s  R, we t r a n s f e r  to  the  r e l a t i v e  
c o o r d i n a t e s  p = r /R ,  z = z / d .  Here  the  p a r a m e t e r  K = d=/R 2 a p p e a r s  in  p rob lem ( 1 ) - ( 2 ) .  This  
q u a n t i t y  i s  u s u a l l y  s m a l l  f o r  most  l e n s e s ,  which  a l l o w s  us to  use  t he  e x c i t a t i o n  method [1] 
and select K as the small parameter e. We also note that in optics the main interest is the 
superheating t% = t -- tc3, with respect to which problem (1)-(2) takes the following form 
with the small parameter taken into account: 

O2t~ ~ Ot~ 02~ woR 2 e - - + - - - - - b  ' e - - = 0 ,  (4) 
0p 2 p Op O~ 

[ H I  0,0p 0z~ ~ Bi~ Y~ ' I  n- e~i)2017__7,= O~~ r" 1 + e(f'0~' (5a)  

--e?~----~-o -V--~- + B i l l /  1 -+-[ eff;)2e 7=T~---- Q~~ -+-e(72)2 ' (5b) 

[oo ] 
Here 

fl [2 . B i j =  a f t ,  ?~= d ; ~ - -  d ' ~ / = 1 ,  2, 3. 

The quantities 

Qlo = ql~ + (tc, - -  tc3) Bil, Q2o = ~ ~  (62 - -  tc3) Biv Qs0 = qs~ 

can be  s t u d i e d  as g e n e r a l i z e d  f l o w s .  

The l i n e a r  f o r m u l a t i o n  of  t h e  p rob lem a l l o w s  us to  s t u d y  t h e  e f f e c t  o f  each  of  the  e n e r -  
g e t i c  a c t i o n s  wo, Qlo,  Qao, Q3o s e p a r a t e l y .  Here t h e  d e s i r e d  t e m p e r a t u r e  f i e l d  i s  o b t a i n e d  
by means o f  the  s imple  summation of  t h e  s e p a r a t e  s o l u t i o n s .  

Internal Energy Source 

The temperature field of the lens with an internal energy source is described by Eq. (4) 
under homogeneous boundary conditions (5). In accordance with the excitation method we pre- 
sent the expansion of the desired function Oo in the central (with respect to p) region as 
follows [i]: 

1 4 3 2  
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Fig. 2. Distribution of superheating~t--t~ 
in radial direction; solid curves refer 
to numerical solution; dashed curves, 
to analytic solution, e, ~ 

~ . ~  ~tK (e) 
K ~ I  

(6) 

The substitution of Eq. (6) into the boundary-value problem and an analysis of the equa- 
tions obtained allow us to determine the expansion coefficients 

~K (~) = ~ -  

S e t t i n g  the  terms equa l  t h a t  have the  i d e n t i c a l  o r d e r  of  e ,  we o b t a i n  a sequence  of  
boundary-value problems to determine@ k(P, z) : 

02% ~ w~ O, 

Oz 2 ~, ! 

o~ ' J ==r, L oF ' J ~ r =  J 

02~p2 _ 0"~% 1 0% 
092 p O 9 ' 

]} = 0 ,  + 2 

and so forth. 

09 

I --., 0 %  
- -  " [ 9  - -  

" Op 

0% , [ 
0 z  § Bi l  ~' 

Oz § Bi2 % -"--2 -%(T2)~ ~=F, 

The solution of problem (7) can be represented as follows: 

=0 

(7) 

(8) 

~01 - -  W~ (I)(P, Z) , ( 9 )  

where 

I - �9 -2 -~ Bilr 2 Bi~ -- BIIBI2 ([2 -- [0 H- -~- 
I_ 2 

r (p, z )  = - -  - - z  2 + z - -  
2 Bi 1 + Bi~ + Bi lBi  2 (/2 - -  f0 

- - - -  T - - - -  L 1 B~IB~d,& (/2 - -  A)-- (&-- h) ~ h& (B~I + B~2) (Bi2~+ m271) 
_. 2 2 ( 1 0 )  

Bi 1 + Bi~ ~- Bi lBi  2 (~  - -  ~) 

Accord ing  to  t he  t e r m i n o l o g y  in  [1 ] ,  we c a l l  s o l u t i o n  (9) t he  i n t e r n a l  s o l u t i o n .  We 
limit ourselves to the first approximation of Eq. (6) and then find the external solution, 
which is related to the search for function ~0 near p = i. To do this we introduce the new 
var iab le 

1433 



l--0 
Po = (~ (e) 

where ~(c) is a small quantity, and we transfer to this variable in Eq. (4) and in the homo- 
geneous boundary conditions (5): 

a ~ o  8 a-Oo a~ :~ ~ 
8 ~ Op~ 8(1--po8) Op~-- + - ~  §  ~, = 0 ,  

[~Fi a~o a% / ~ ] Op o 0 z  § Bi, 1 + ~-(Fi)~6o = 0, 

- - F F ~  aPo + az- + B % F  I=,  (F~)2~ o -~=~,  ---- 0 '  

(5 Opt- + Bis o -IPo~ 

(11) 

(12a) 

(12b) 

(12c) 

Here we introduce the following notation: 

(p = I - -  po 6) == F, (Po), FI = dF---!~ ," 
dPo 

(p = 1-7po6)- -  r~ (po), P~ = #P~ 
dpo 

To determine quantity 6(c) we must analyze the behavior of ~. (ii) for various relations 
of 6 and c. The results of the analysis is the equation 6(c) = . Taking the value found 
for 6 into account, Eq. (ii) takes the form 

a~o ] /~ a~o a~o + e w~ o. ( i3)  
op~ 1-po V; a~ + ~ ~ =  

We represent 7 0 in series form, 

~0 = EVK(e)~K(P0, ~, VK+I (e) ~ I (14) 
K=! 

and substitute it into boundary conditions (12) and Eq. (13), after initially expanding them 
in Taylor series term by term in the region of point p = i. The analysis of the equations ob- 
tained allows us to determine the values of the expansion coefficients, 

K+I 

v~ (~) = ~ 

By setting equal the terms that have the identical order of c, we obtain a sequence of 
boundary-value problems to find the function ~K(0O, z). For the first approximation we have 

a2~1 a2~ i  w o R  ~ " 
- -  - -  ~ 0 7 

ap2o , az. 2 i z 

a z= riO) az ' .a z= f2(!) 

(15) 

(16) 

ap ~ i j o o~o 

We solve the problem given by the averaging method [2], applying the following integral 
operator to the initial equation (15) and boundary conditions (16): 
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-~2 (1) 
1 f ~  

% d z  = ( ~ F  . 
I~- [~J - f ~  ( 1 ) -  f-1 (1) _J 

h (1) 

We omit the details of the solutinn, which is presented in [2], 
sult: 

and write the final re- 

% = r (p = 1, 

Cm z _  Bi z mo R2 Biztn~C 
~, woR 2 

m -~ Bi 3 exp (-- moo) § Cm ~ exp (mpo) -~ 2~ 
(17) 

where 
m2_Bi1r I~ +Bior 

& 0) - -  fl 0) ' (18) 

~ and ~2, the coefficients that characterize the inhomogeneity of the temperature field, are 
determined by the equations 

~h = 9~ [P0, _z ~ fl (1)1., ~2 = % [P0, _z = f~ (1)] (19) 

In the first approximation the coefficients ~ and ~2 are assumed to be constant and con- 
sidered as equal equations of the mean integral values of the numerator and denominator [2], 

The indeterminate constant C figures in Eq. (17) due to the fact that there is no single 
boundary condition to determine problem (15)-(16) fully. The condition of joining the solu- 
tions of ~0 and ~0, enters its role, and this condition leads to the satisfaction of the boun- 
dary condition 

lim ~0 ---- lirnYff0 = A. 
p~I  9,~oo 

In our case this condition is satisfied if C = 0. Consequently, 

- -  exp (-- mpo )] 
] 

~ =  ~ ~ ~ [  1 Bi3 
L ' m + Bi 8 

To o b t a i n  an e q u a l l y  s u i t a b l e  s o l u t i o n  in  t h e  r e g i o n  0C[0,  1 ] ,  we sum th e  i n t e r n a l  and 
e x t e r n a l  s o l u t i o n s  and s u b t r a c t  t h e  g e n e r a l  p a r t  A from them. In  p h y s i c a l  v a r i a b l e s  we o b t a i n  

X m--Big  

To c o m p l e t e  t he  s o l u t i o n  we d e t e r m i n e  c o e f f i c i e n t  m from Eqs.  ( 1 8 ) - ( 2 0 )  

m2 = Bi, § Bi 2 + Bi,Bi 2 [~(1) -- ~ (l)I 
(21) 

[~ ( 1 ) -  ~ (1)]{1 § - -  i ( B i l  + Bi~)[~ ( 1 ) -  ~(1)]~- ~2BixBi2[~(1)--/?(1)]' } " 

Thus t h e  t e m p e r a t u r e  f i e l d  o f  t h e  l e n s  h e a t e d  by an i n t e r n a l  s o u r c e  i s  d e s c r i b e d  i n  t he  
f i r s t  a p p r o x i m a t i o n  by Eqs.  ( 2 0 ) ,  ( 21 ) ,  and (1 0 ) .  

The t e m p e r a t u r e  f i e l d s  p roduced  by t h e  a c t i o n  of  o t h e r  e n e r g e t i c  f a c t o r s  a r e  found  by a 
similar scheme. After generalizing the separate results, we can write the final calcu!atad 
equation that describes in the first approximation the steady temperature field of an element 
of the optical system subject to complex heating action, 

Wo d2 Qlo -~ Q20 ~- QloBi2(~ - -  ~ q- Q~oBil ( z "  fl) 
t = tc3 § r (p, z )  § 

Bil -~ Bi2 +SilBi2 (f2 - -  ~) 

{Wo d~ Bi3 exp [__m(1 _ p )  R ] _  
--cl)(p = 1, z) ~ m ~ B i 3  _ 

m Q3o exp - -  m (1 - -  p) + (p§ - -  ~(1)1 
m § Bi a 
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X exp [ - -  p(1 - -  p) -~-R 1 + 
d_l  

S 2 = =  

O~-~ exp [ - - s (1 - -  p)-~]} 
(s -~- Bi3)[~ (1) -- ~ (1)1 

Bh + B~ + BhBi~ [ ~ (1) -- ~ (I)1 

ml + BJ~ -- Bi,Bi~ [~ (i) --  ~ (I)I 

(22) 

We estimate the error of the solutions determined. For this we compare the approximate 
solution (22) with the one calculated on the example of a biconvex lens with the parabolic re- 
fracting surfaces $I and Sa given by the functional equations 

f l~dlp 2, f2=d@d2p2; dl =, 0.02981 m,  d ~ = - - 0 . 0 2 1 1 2 m ,  d =  0 , 0 9 5 m ,  R = 0 . 3 5 m .  

We give the energetic action by the flow falling on the front surface of the lens $I, 

qlo ----- 76.0 W/m~, q.~o : O, qso : O; w o = 126.,3 W/rn 3, 

and we assume the temperatures of the three media to be identical. Finally, we give the 
conditions of heat exchange, 

a 1 = 3 W/rn ~" =K, a., -~ 7.7 W/m 2- -'K, ~3 - +  oo 

and the thermal-conductivity coefficient X = 0.72 W/m.~ The calculation, with which the 
analytic function was compared, is conducted according to the network method with the number 
of nodes about 400. The results of comparing the solutions for the superheating O in the 
radial direction are presented in Fig. 2. We see from the graphs that for p < 0.9 the numer- 
ical and analytic solutions are distinguished by not more than 4%, i.e., at the margin of 
error for the numerical solution. For 0.9 < p < 1 the relative error is considerably higher. 
However, the relative error already characterizes the accuracy of the solutions poorly on 
such a small interval of the variation p and on the comparatively low-temperature level. The 
disparity of the solutions in this range does not exceed 14% of the maximum superheating. In 
the case of finite values of the heat-exchange coefficient ~3, the curvature of the tempera- 
ture field in the radial direction will be less and we should expect a better agreement of 
the solutions. 

We note, in conclusion, that the region p < 0.8 is of the greatest interest in studying 
problems in optics, since the remaining part of the lens is not operative. Thus, because of 
the principle of local effect, the errors omitted in determining the temperatures at interval 
0.9 < p < 1 do not produce significant errors in determining the temperature stresses in the 
region of practical interest. 

NOTATION 

nl, n2, directions of external normals to surfaces $I and $2 R, lens radius; d, its 
axial thickness; t(r, z), lens temperature at point (r, z); p = r/R, z = z/d, relative lens 

dimensions. 

l, 

2. 
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